Shared muscle synergies in human walking and cycling.
نویسندگان
چکیده
The motor system may rely on a modular organization (muscle synergies activated in time) to execute different tasks. We investigated the common control features of walking and cycling in healthy humans from the perspective of muscle synergies. Three hypotheses were tested: 1) muscle synergies extracted from walking trials are similar to those extracted during cycling; 2) muscle synergies extracted from one of these motor tasks can be used to mathematically reconstruct the electromyographic (EMG) patterns of the other task; 3) muscle synergies of cycling can result from merging synergies of walking. A secondary objective was to identify the speed (and cadence) at which higher similarities emerged. EMG activity from eight muscles of the dominant leg was recorded in eight healthy subjects during walking and cycling at four matched cadences. A factorization technique [nonnegative matrix factorization (NNMF)] was applied to extract individual muscle synergy vectors and the respective activation coefficients behind the global muscular activity of each condition. Results corroborated hypotheses 2 and 3, showing that 1) four synergies from walking and cycling can successfully explain most of the EMG variability of cycling and walking, respectively, and 2) two of four synergies from walking appear to merge together to reconstruct one individual synergy of cycling, with best reconstruction values found for higher speeds. Direct comparison of the muscle synergy vectors of walking and the muscle synergy vectors of cycling (hypothesis 1) produced moderated values of similarity. This study provides supporting evidence for the hypothesis that cycling and walking share common neuromuscular mechanisms.
منابع مشابه
Shared and Task-Specific Muscle Synergies during Normal Walking and Slipping
Falling accidents are costly due to their prevalence in the workplace. Slipping has been known to be the main cause of falling. Understanding the motor response used to regain balance after slipping is crucial to developing intervention strategies for effective recovery. Interestingly, studies on spinalized animals and studies on animals subjected to electrical microstimulation have provided ma...
متن کاملIntra-Subject Consistency during Locomotion: Similarity in Shared and Subject-Specific Muscle Synergies
Human locomotion is a complex motor task. Previous research hypothesized that muscle synergies reflect the modular control of muscle groups operated by the Central Nervous System (CNS). Despite the high stride-to-stride variability characterizing human gait, most studies analyze only a few strides. This may be limiting, because the intra-subject variability of motor output is neglected. This ga...
متن کاملMuscle Synergies in Cycling after Incomplete Spinal Cord Injury: Correlation with Clinical Measures of Motor Function and Spasticity
BACKGROUND After incomplete spinal cord injury (iSCI), patients suffer important sensorimotor impairments, such as abnormal locomotion patterns and spasticity. Complementary to current clinical diagnostic procedures, the analysis of muscle synergies has emerged as a promising tool to study muscle coordination, which plays a major role in the control of multi-limb functional movements. OBJECTI...
متن کاملInvestigation of Muscle Synergies Using Four Different Methods of Synergy Extraction While Running on a Treadmill in Beginner Runners
Introduction: The study of muscle synergy is a new way to evaluate the functioning of the human body's control system. Different mathematical methods are used to extract muscle synergies from electromyographic data, and this factor can cause different outputs in muscle synergies. Therefore, the aim of this study was to investigate muscle synergies using four different synergy extraction methods...
متن کاملCommon muscle synergies for balance and walking
Little is known about the integration of neural mechanisms for balance and locomotion. Muscle synergies have been studied independently in standing balance and walking, but not compared. Here, we hypothesized that reactive balance and walking are mediated by a common set of lower-limb muscle synergies. In humans, we examined muscle activity during multidirectional support-surface perturbations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 112 8 شماره
صفحات -
تاریخ انتشار 2014